Modeling Physico-Chemical ADMET Endpoints with Multitask Graph Convolutional Networks

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling Relational Data with Graph Convolutional Networks

Knowledge bases play a crucial role in many applications, for example question answering and information retrieval. Despite the great effort invested in creating and maintaining them, even the largest representatives (e.g., Yago, DBPedia or Wikidata) are highly incomplete. We introduce relational graph convolutional networks (R-GCNs) and apply them to two standard knowledge base completion task...

متن کامل

Structured Sequence Modeling with Graph Convolutional Recurrent Networks

This paper introduces Graph Convolutional Recurrent Network (GCRN), a deep learning model able to predict structured sequences of data. Precisely, GCRN is a generalization of classical recurrent neural networks (RNN) to data structured by an arbitrary graph. Such structured sequences can represent series of frames in videos, spatio-temporal measurements on a network of sensors, or random walks ...

متن کامل

Modeling polypharmacy side effects with graph convolutional networks

Motivation: The use of multiple drugs, termed polypharmacy, is common to treat patients with complex diseases or co-existing medical conditions. However, a major consequence of polypharmacy is a much higher risk of adverse side effects for the patient. Polypharmacy side effects emerge because of drug-drug interactions, in which activity of one drug may change, favorably or unfavorably, if taken...

متن کامل

Dynamic Graph Convolutional Networks

Many different classification tasks need to manage structured data, which are usually modeled as graphs. Moreover, these graphs can be dynamic, meaning that the vertices/edges of each graph may change during time. Our goal is to jointly exploit structured data and temporal information through the use of a neural network model. To the best of our knowledge, this task has not been addressed using...

متن کامل

Graph Convolutional Networks

We present a scalable approach for semi-supervised learning on graph-structured data that is based on an efficient variant of convolutional neural networks which operate directly on graphs. We motivate the choice of our convolutional architecture via a localized first-order approximation of spectral graph convolutions. Our model scales linearly in the number of graph edges and learns hidden lay...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Molecules

سال: 2019

ISSN: 1420-3049

DOI: 10.3390/molecules25010044